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Abstract—This work focuses on a recently developed special
type of biologically inspired architecture, which here denoted as
a Sensorimotor Network, able to co-develop sensorimotor struc-
tures directly from the data acquired by a robot interacting with
its environment. Such networks learn efficient internal models of
the sensorimotor system, developing simultaneously sensor and
motor representations (visual and movement receptive fields)
adapted to the robot and its environment. Here Sensorimotor
Network is compared with a Multilayer Perceptron in the ability
to create efficient predictors of visuomotor relationships. It is
confirmed that the Sensorimotor Network is significantly more
efficient in terms of required computations and is more precise
(less prediction error) than a simple feedforward neural network
in predicting self-induced visual stimuli. The sensorimotor
approach is proved to be replicable in a modified neural network
and capable of organizing the same meaningful structures. In
addition, all sensorimotor structures are studied regarding their
complexity, connectivity and visual perception influence. Finally,
a sensorimotor model is trained using real data recorded during
a quadricopter drone flight.

Index Terms—Stimuli prediction, neural networks, sensori-
motor network, visual receptive fields, motor movement fields.

I. INTRODUCTION

Nature shows that evolution tends to improve the efficiency
of organisms. Solutions found in nature are an important
source of inspiration for the design of autonomous systems
and bio-mimetic solutions are gaining increasing interest in
the development of embedded applications where resource
constraints and computational bottlenecks are the rule rather
than the exception.

In terms of visual capabilities, that require a significant
amount of computation, it is important to understand both
the role motor actions have in visual perception and visual
stimulus prediction, and its relationship with the neural
circuits organization. Living organisms’ visual systems are
continuously trained and improved while relationships be-
tween motor actions and sensory feedback are learned by the
agent during the interaction with its habitat or environment.

Without perception one is left with little criteria to decide
which actions to take, while at the same time there is no
purpose in having perception if you cannot act on the world.
An ideal rational agent [1] always takes the actions which
maximizes its performance measure based on its percepts
and built-in knowledge. This definition frames perception as

a component used to choose the right action, and not as a
goal by itself. Under this light a broad goal is to develop
sensorimotor structures which support choosing the right
action. To be able to do so one crucial ability that organisms
developed is the ability to discern the origin of sensory input
between changes in the environment (exafference) and the
result of the animal’s own movements (reafference) [2]. The
ability to discern between these two origins of sensory input
requires a forward model [3] to predict the effect a given
movement (action) has on its sensory input.

The presented adaptive model [4] learns to predict visual
stimulus based on motor information resulting from self-
inducing actions. This model maps motor input in a structure
also processing visual stimulus, creating direct relationship
between the robot’s actions and its perceived visual stimuli.
Following a specific learning process it was possible to
minimize the prediction error evaluated by the mean square
error between the predicted image and the expected image
after a specific motor action. In spite of starting from
an unknown topology, the proposed structure developed a
topology covering the recording visual sensor and organized
itself leading to a less costly prediction model.

In the sensory layer through the same developmental
process an organization also emerges. Each sensory neuron’s
receptive field, RF, is composed of a set of retina cells
which cover nearby parts of the visual field and together
represent a continuous portion of it. The motor layer in the
same developmental process also organizes itself. In this
layer, each neuron’s RF reacts to actions which produce
similar results. This simultaneous development promotes a
coherent representation for similar stimuli (sensory) and
actions (motor), which greatly improves the effectiveness of
structure by taking advantage of these organizations.

This thesis compares the model proposed in [4] with
Multilayer Perceptron (MLP) with a single hidden layer. For
sensorimotor prediction, it is shown that a network with a
specific structure can attain significant advantages over fully
connected networks. This work claims that co-developed
structures yield better sensory predictions for the effects
of actions, relatively to a more naive and straightforward
approach which lacks a sensorimotor structure and develop-
ment supporting the importance of coupling sensor and motor
information.



II. RELATED WORK

Considering a limited amount of resources an organism
needs to choose which actions to represent in its motor
system. A criteria which fits well with the stimulus predic-
tion rationale is to represent actions which have predictable
effects [5]. Assuming a particular sensory structure for the
simultaneous development of a motor system and a forward
model (which predicts the sensory input for a given action) a
topology emerges in motor system to support the predictabil-
ity of the actions [6].

It has been shown that, while maximizing the sensor’s
self-similarity under a given set of transformations, highly
regular structures emerge which resemble some biological
visual systems [7]. Still, for these structures to emerge, a
priori knowledge is required about the sensor spatial layout.
The retinotopic structure of an unknown visual sensor has
been reconstructed using an information measure, as well as
the optical flow induced by motor actions [8]. A robot with
the goal of estimating the distance to objects using motion
parallax developed a morphology for the position of movable
light sensors which was fit for the task [9].

Guiding the development of a sensorimotor system to
maximize the ability of predicting the effect an action has
on its sensory input (see Methods), allows for the emer-
gence of highly regular sensory structures without any prior
knowledge. To develop such ability two main principles are
followed: the sensory system should capture stimuli which
are relevant to motor capabilities and the actions of the motor
system should have predictable effects on the sensory system
[4].

These principles are related to idea of “morphological
computation” in robotics and artificial intelligence, which
aims at reducing the computational complexity of a problem
by using a specifically designed body to solve it (e.g. [10]).
The human visual system representation of the visual world is
progressively differentiated from what is captured through the
retina to support complex tasks, e.g. cells which are selective
to objects. Also, in machine learning it is known that for
recognition tasks there are huge advantages in using specific
architectures [11] (e.g. convolutional) relatively to a fully-
connected network.

In the 80s researchers started to realize neural networks
potential when supported by the growing interest in human
cognition for Artificial Intelligence applications and the rapid
increase of computer processing power. At that time many
works based on these networks were issued with special
relevance to Fukushima’s work at digit recognition [12] and
Sejnowski’s work at teaching a network to pronounce English
written words [13]. Although, neural networks are still not
good enough to compete with a brain, they already give
computers the capability of learning by example and are
effectively used in applications of object recognition, patterns
recognition or data classification.

This thesis proposes the recently developed adaptive model
of Sensorimotor Network [14] as a path to follow for better

image processing and development of retina-like structures.
The authors approach considers the interconnection between
different areas of the brain (namely the visual and motor
areas) and its adaptive properties that optimize the sensor,
motor and predictive structures to the agents morphology and
environment characteristics.This sensorimotor structures are
presented as a biological equivalent of a Corollary Discharge
Circuit (CDC), where motor signals emitted in the deep
layers of the superior colliculus, are integrated and fed in
the frontal eye field visual receptors [15].

III. SENSORIMOTOR PREDICTION ARCHITECTURES

An agent is considered capable of observing its envi-
ronment by sensing a light field ¢ which falls on a two
dimensional sensory surface. Similarly this agent is able to
interact with its environment by activating a particular motor
primitive q on its action space. For implementation purposes,
the light field is represented as a vector i of N, pixels, and the
action space is represented as a vector q with N,,, elements,
where a single non-zero entry represents the activated motor
primitive. If the n* index of q is 1, then the n'” physical
action is performed (e.g. shift left by a certain amount). Note
that no topological assumptions exist on the spatial locations
of either the incident light field or the motor primitives.

During the learning phase, the agent interacts with the
environment by randomly choosing a motor primitive g while
collecting before and after sensory stimuli (i and i;). These
triplets are collected for several iterations and the full batch
is used as training data.

Here two possible architectures are considered for an
agent, capable of predicting its interaction with the envi-
ronment, and compare 1) its predicting capabilities, i.e. how
well it can predict i; given iy and q; 2) its simplicity, i.e. the
number of parameters learned which contribute to prediction.

A. Multilayer Perceptron

In this case a feed-forward linear network, equivalent to
a Multillayer Perceptron (MLP), with n, elements in its
hidden layer emulate receptive fields. The sensor input i
is concatenated with the activated action q (working as an
action identifier) and used as input to the network predicting
i;. The optimization problem solved is thus
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which is represented in Figure ??. Here, W; is an
(Np + Ng+ 1) X ng matrix, and Wa is (ns+ 1) X N,
where each matrix includes a constant bias term. In Figure
1, the used feedforward neural network is represented.
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Fig. 1: Multilayer Perceptron: schematic diagram represent-
ing the total data triplets (Ip,I1,q) used to train the model
(blue) and the trained parameters (W7, W3) and stimuli
prediction I’y (orange). The hidden layer can have different
activation functions (linear or non-linear).

B. Sensorimotor Network

The visual prediction system described in [4], models
the existence of light sensitive receptors represented as an
N;s X ns matrix S which integrate the light field i falling
on the 2D sensory surface. The sensor observation is then
a vector o = Si. On the motor side a dual structure exists,
where a set of discrete motor movement fields modeled in a
Ny, Xn,,, matrix M cover the available motor primitive space
q, providing a n,, dimensional motor action representation
space a = M”q. These are then fed to a predictive layer,
where a predictor P¥, for each action, is composed as a linear
combination of n,, basis predictors P; with linear weights
given by the motor movement field activations,

P"=>"(m]q") P, )
J
where m]T represents transposed of the ;" column of M and
the corresponding motor receptive field.
The full model description is provided in [4], results in the
optimization problem
(S*,M*,P*) = argmin Z ‘
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and is represented in Figure 2. Unlike in the MLP architec-
ture, the sensor reconstruction model is simplified to be ST,
In [4] the authors argue that this simplification is justified by
the particular solutions obtained from the model, particularly
the fact that the matrix S will be nearly orthogonal.
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Fig. 2: Sensorimotor Network: schematic diagram represent-
ing data triplets (Iy,I;,q) used to train the model (blue) and
the trained parameters (P*,M*,S*) and stimuli prediction
T’y (orange).

C. Sensorimotor Neural Network

Additionally, the sensorimotor architecture is implemented
in a neural network built using Neural Network toolbox from
Matlab. After creating an unexisting multiplication block,
Figure 3, by using matrix manipulation, the dot product
function from Matlab and fixed weight matrices X,Y,Z,
it was possible to train a modified neural network capable
of evolving similar organized sensor and motor topologies as
those proposed in [4].

Product Block

®
8

Input 1: vec(A)

Fig. 3: Multiplication block using Matlab’s Neural Network
Toolbox blocks.

Output: vec(C)
Input 2: vec(B)

The full block diagram of the developed Sensorimotor
Neural Network is shown in Figure 4. Training of such a
model raises some issues. Matlab’s Neural Network Toolbox
has also some limitations when trying to impose some
constraints in the weight matrices. Constraints like positivity
(negative values being projected to 0) and normalization
(applied to S and M) have to be computed after each neural
network training iteration. This implies that the sensorimotor
neural network training has to be interrupted every time the
projection and normalization is made. As in Sensorimotor
network approach, (P,M,S) are sequentially trained. Alto-
gether, the developed neural network counts with 4 dynamic
layers, whose weights are effectively trained, and 3 static
layers from the added multiplication block.
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Fig. 4: Block diagram of Sensorimotor Network approach
using Matlab’s Neural Network Toolbox.

IV. EXPERIMENTAL SETUP
A. Models Comparison

To compare the proposed biologically inspired Sensori-
motor Network architecture, here on called SNet, with the
Multilayer Perceptron, addressed as MLP, two experiments
are designed. In the first experiment, ExpXY, the motor space
spans actions leading to translations in the image plane,
whereas in the second experiment, ExpRZ, actions leading
to centered rotations and zooms in the image are used. The
first set of movements either mimics an agent that moves
its sensor parallel to the environment surface or an agent
that performs small pan-tilt rotations of the sensor when
observing far objects. The second set of movements can
either be seen to approximate the observations of an agent
moving in a tubular structure translating and rotating along
its optical axis, or the observations of an agent while actively
tracking an object that rotates and changes its distance
from the observer. For each case, 10 runs for each training
algorithm are performed. Each run is composed of a training
batch of 8100 triplets, uniformly sampled from a discrete
set of N, = 81 canonical actions (100 triplets of each
canonical action). A validation set with half the samples
is used as stopping criteria and a test set with the same
number of samples is used for prediction errors comparison.
For the first experiment the set of actions is composed of
pixel translations w = {—4 : 1 : 4} x {—4 : 1 : 4} and for
the second experiment the set of actions combine rotations
and zoom scale factors transformations u = {—100° : 25° :
100°} x {0.80 : 0.05 : 1.20}. These experiments will be
referred from here on as experiments ExpXY and ExpRZ,
respectively.

The agent is equipped with a square retina of 15 by 15
pixels (Ngs = 225) which is used to acquire the images.
Triplets (ig.i1,q) are obtained using a 2448 by 2448 pixels
image as environment. First the agent is positioned in a
random place in the environment and image iy is sampled.
Then action u is performed and the new image i; is sampled.
This process is illustrated in Figure 5.

After acquiring its exploration data in the given environ-
ment, the agent processes the data in order to obtain the
network parameters for the SNet (S, M, P) and for the MLP
(W1, Wy). The optimization criteria is the average squared
error in image prediction given an action as in equations (1)
and (3). In both experiments, the SNet model is formed by a
motor structure composed by 9 movement fields (n,,, = 9) and

Fig. 5: Triplet acquisition process. In the left we show the
full environment image. In the right we show a portion of
the environment where the agent is placed to acquire the pre-
action 15 x 15 pixel image, iy, then transformed by action u,
and acquire the post-action image, 7; (Best seen in color).

a sensor structure composed by 9 receptive fields (ny = 9),
which is compared with a linear (purelin) and a non-linear
(tansig) hidden layer of 9 neurons for the MLP model. The
number of receptive/movement fields and hidden units can
be chosen taking into account the resources available in
the particular hardware used to deploy the system. In these
experiments an identical number of sensor and motor fields is
used but these numbers may be different. For instance, higher
image resolution should be followed by higher number of
visual receptive fields.

The optimization problem for the SNet showed in Eq. (3)
is iteratively improved using a projected gradient descent
method [16] within the sequential optimization of P, M, S,
and the input triplets are considered in batches as in [4]. For
SNet and MLP, while performing the optimization, the RMSE
between the predicted and the expected images is computed,

RMSE=,| —

Ny, X L X Ny
“4)

where L stands for the number of samples per action.

The RMSE on the validation set is used as a stopping
criterion: the optimization stops when the training error
becomes almost constant and the validation error starts to
Srow.

After training both networks, they are compared in terms
of efficiency (number of parameters used) and precision
(RMSE). A relative comparison regarding loss of information
(information criteria) is also computed using Akaike infor-
mation criterion (AIC) and Bayesian information criterion
(BIC) with,

AIC = 2k — 2log(L) (5)

BIC = klog(n) — 2log(L) (6)



where log is the natural logarithm and L is the considered
likelihood function:

L — expf)\RMSEz 7)
with A = 0.9, k the number of parameters to be estimated
and n the number of data samples (triplets) used for training.

B. Sensorimotor Properties

Here, additional experiments were performed to evaluate
the sensor complexity, ExpSensor, and environment influence
on an agents visual perception, ExpEnvironment. In addition,
a following experience using a Parrot AR.Drone 2.0 was
performed in order to train sensorimotor structures regarding
real motor and sensor data.

In the first experiment, ExpSensor, using the described
action space used in ExpXY with actions ranging u =
{—4:1:4} x{—4:1: 4}. Maintaining the same motor
structure (n,, = 9) and static forest environment, the model
was trained with three different number of visual receptive
fields (ns1 = 9,n,1 = 16,n,3 = 25) in the sensor structure.

In the experience checking the environment influence,
ExpEnvironment, for different environments where used: 3
distinct images with artificial patterns and 1 image of forest
mimicking a natural environment. Each environment was
tested with two combinations of actions as in ExpXY and
ExpRZ (w = {—4 : 1 : 4} x{-4 :1: 4} and u =
{=100° : 25° : 100°} x {0.80 : 0.05 : 1.20}, respectively).
The sensor structure was composed by 9 visual receptive
fields and the motor structure by 9 movement fields. Both
ExpSensor and ExpEnvironment were trained using 100 data
triplets per action for a total of 81 actions.

The last experiment was performed using visual and motor
information acquired by a drone during its flight, which was
used to train a sensorimotor structure with 9 fields in each
motor and sensor layer. The used data is described with the
results.

V. RESULTS

In this section it is shown the results obtained from the
optimization of the two models under comparison (Sen-
sorimotor Network vs Multi-Layer Perceptron), using the
methods and experimental setup described in the previous
sections. The results from sensorimotor experiments and its
training using real data are presented.

A. Statistical Models Comparison (ExpXY, ExpRZ)

After convergence of training on the 10 runs for each
of sensorimotor and MLP methods (with the MLP hidden
layer using two different activation function: linear and non-
linear) several statistics are computed in order to evaluate and
compare their performance. It was observed that the SNet has
significantly less RMSE (about 5 to 15% lower) and uses a
much lower number of non-null parameters (about 4-6x) that
the MLP, in both experiments, mainly because of its sparse
solution. Different local minima in the SNet optimization

leads to some structure’s variations, but yet with very similar
results. The results are quantitatively expressed in Table I and
Table II, where the information criteria, AIC and BIC, are
also shown. As expected, being the error lower and having
lower number of parameters, the SNet also has better scores
in the information criteria.

ExpXY Sensorimotor MLP MLP/SNet
All Parameters 3483 5013 1,44
Parameters # 0 1140 5013 4,40
Parameters > 103 803 4910 6,11
RMSE 0.1004 0.1087 1,08
AIC 2.654 10.457 3,94
BIC 10.628 45.546 4,29
ExpRZ Sensorimotor MLP MLP/SNet
All Parameters 3483 5013 1,44
Parameters # 0 1053 5013 4,76
Parameters > 105 743 4925 6,63
RMSE 0.0955 0.1100 1,15
AIC 2.442 10.467 4,29
BIC 9.817 45.556 4,64

TABLE I: Comparison between SNet and linear hidden
layer MLP in both translation and rotation experiments. The
presented values result from the average from all 10 runs.
As observed sensorimotor approach uses less parameters,
produces a bit less reconstruction error and has less loss of
information. The differences are higher between the models
in ExpRZ.

ExpXY SNet Non-Linear MLP | MLP/SNet
All Parameters 3483 5013 1,44
Parameters # 0 1140 5013 4,40
Parameters > 105 803 4992 6,22
RMSE 0.1004 0.1241 1,24
AIC 2.654 10.026 3,78
BIC 10.628 45.115 4,24
ExpRZ SNet Non-Linear MLP | MLP/SNet
All Parameters 3483 5013 1,44
Parameters # 0 1053 5013 4,76
Parameters > 103 743 4993 6,72
RMSE 0.0955 0.1233 1,29
AIC 2.442 10.026 4,11
BIC 9.817 45.115 4,60

TABLE II: Comparison between SNet and non-linear hidden
layer MLP in both translation and rotation experiments. The
presented values result from the average from all 10 runs.
Non-Linear MLP uses about the same number of parameters
and has a RMSE somewhat higher than Linear MLP.

In Figure 6 the reconstruction RMSE at each pixel of the
retina is computed over all images of the test set. We can
observe the localization of pixels which lead to higher error
and also compare the effectiveness of reconstruction between
both methods. For both experiments, the reconstruction error
is higher near the retinas boundaries. Both in translations and
zoom-out actions there are image regions that are not possible
to reliably predict since they are out of the pre-action image.
Thus it is natural to have higher reconstruction errors close
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Fig. 6: Comparison between both methods regarding RMSE
per pixel for reconstruction in a test set. (Top) Experiment
XY run. (Bottom) Experiment RZ run (Best seen in color).

to the boundaries. Anyway, this fact is exacerbated in the
multilayer perceptron on ExpRZ showing its limitations on
predicting this type of motions, since its prediction is a mean
radial distribution of intensities showing no patterns of the
expected images.

B. Sensorimotor Topology (ExpXY, ExpRZ)

Here the emergent properties [4] with respect to SNet
organization (optimization problem in Eq. (3)) are revisited.
These results illustrate some interesting outcomes of the
optimization process in terms of the shape and distribution
of the sensor and motor receptive fields. The sensor receptive
fields (rows of S) organize into a regular structure (after 500
iterations) starting from a random initialization (see Fig. 7).
Notice that these organize more uniformly for translation
actions then for rotations and zooms. With rotations and
zooms the sensor fields tend to create a group of smaller
receptors in the middle of the retina and bigger fields near the
boundaries (a rotation produces higher movement far from its
center).

In Figure 8 it can be observed the evolution of the motor
fields (columns of M) for both experiments. ExpXY has
its action space uniformly sampled by pixels, producing a
near uniform organization of the motor fields. The performed
zooms in ExpRZ had low impact on their images in com-
parison with the rotations, which caused the motor fields
to organize in a way that each one represents an angular
range. Exception for the middle ones where no rotation is
performed and zooms have weight in motor movement fields
organization.
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Fig. 7: Sensor RFs initialization and final organization after
500 iterations in one of the runs of ExpXY (Top) and ExpRZ
(Bottom) (Best seen in color).
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Fig. 8: Motor MRFs initialization and final organization after
500 iterations in a run of ExpXY (Top) and ExpRZ (Bottom)
(Best seen in color).



C. Stimulus Predictions (ExpXY, ExpRZ)

After training the Sensorimotor Network, we can use it for
making stimulus prediction of the agent’s actions. Giving a
certain planned motor action q it can be computed (i) the
activation of the motor fields, a = MTq; (i1) the prediction
matrix P by Eq. (2); (iii) the predicted stimulus by o3 =
PSig; and finally (iv) obtain the predicted image by i’y =
ST01.

In Figure 9 steps (i), (ii) and (iii) for the translational action
u = (4,4) and the rotation/zoom action u = (50°,1.0) are
graphically illustrated. On the left, the resulting predictor P*
for the activated action is represented. On the middle the lo-
cation of the motor movement fields and their activation (the
shade of gray) for that specific action is shown. Finally, on the
right it can observed the visual receptive fields distribution
together with arrows representing the main directions of flow
of the prediction result P¥. The predictor translates motor
effects on visual area, by weighting connections between the
receptive fields and identifying areas of observation which
will move from a receptive field (transmitter) to another
(receiver). The arrows thus indicate the contribution of the
transmitter in the formation of the target receptor field, with
weights proportional to the arrows gray level.
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Fig. 9: (Left) Predictive structure P*. (Mid) Motor RF acti-
vations corresponding to particular actions. (Right) Induced
prediction field in the sensory space. (Top) Action u = (4, 4)
on the translation network (Bottom) Action u = (50°, 1.0)
in the rotation/zoom network. The sensor RFs connections
are represented by arrows intensity proportional to the cor-
responding prediction matrix entry (see details in text). Only
prediction links with weights over 0.25 are shown. Voronoi
diagrams are used to split the motor and sensor spaces into
RFs.

The formation of the predicted image, step (iv), is illus-
trated in Figure 10. This is interpreted as the prediction
of what will appear in the agent’s field of view after its
action is executed. Comparing the predicted image with the
actual post-action image, it can be concluded that the former
is a low pass version of the latter, i.e. the best encoding
of the reality in a least squares sense, with the available
computational resources (visual receptive fields).
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Fig. 10: Real and predicted image examples for the respective
actions: (Top) Translation action example: u = (4,—4)
and (Bottom) Rotation and zoom action example: u =
(—75°,1.20), using both SNet and MLP methods. As shown,
reconstructions obtained by SNet optimization show a more
coherent prediction of visual stimuli regarding the expected
images.

D. Sensor Complexity Influence (ExpSensor)

Looking for the direct influence of sensor structure com-
plexity on the stimuli prediction, some tests were made
using experiment ExpSensor data set and model configura-
tion. Three different models were trained, all in the same
conditions, using the same action space, but with different
number of available visual receptive fields in the sensory
structure (9, 16 and 25). In Figure 11 it can be observed the
organized sensor topologies from the three different sensor
complexity models. Besides, the reconstruction error RMSE
was computed using a test set with the same size of the
training set (8100 triples). Below a reconstruction example
is shown where for the same action and pre-action image,
the visual stimuli prediction is computed and compared with
the actual observed post-action visual stimulus.

As expected and observed, the quality of the reconstruction
improves with the number of visual receptive fields. Although
the prediction error decreases with the number of available
receptive fields, this also presents an increasing relative
number of empty receptive fields. In the case where 9 sensor
receptive fields were considered, the model used all of them.
However, when reaching higher number of visual receptive
fields, some become unnecessary for the adapted model (1
out of 16 RFs and 7 out of 25 RFs). All in all, a trade-
off can be found in increasing the sensor complexity: on the
one hand the prediction error decreases, but the amount of
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receptive fields consuming computational power, without any
advantage for the prediction, increases.

E. Environment Influence (ExpEnvironment)

As proved in many works [17], [18], [19] the eyes, retinas
and/or visual systems evolved in many species in very dis-
tinctive manners, but all highly efficient when vision appears
as the most important sense for the organism. Three main
characteristics can be enumerated which directly influence
their structures: organism’s nervous system, organism’s motor
capabilities and organism’s perception of the environment.

Here the environment influence on the sensory structure
within the sensorimotor system is tested. Using the action
spaces mencioned for ExpEnvironment and its data sets four
different environments were used for Sensorimotor Network
training: 3 artifical (vertical stripes, diagonal stripes and dots)
and 1 natural (textured picture of dry dirt). In Figure 12 there
are represented the resulting sensor organizations, S, for the 4
environments and the number of iterations until convergence.
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Fig. 12: Environment influence on visual sensor topology.
Sequence of visual sensor topologies resulting from training
the sensorimotor system using action spaces from ExpXY
and ExpRZ, and four different environments: three artificial
environments (vertical stripes, diagonal stripes and dots) and
one natural environment (textured picture of dry dirt).

From the presented results it can be concluded that the
sensor structure organization depends on the environment.
Considering the question made in [20] and the tested senso-
rimotor system, it can be hypothesized that a retina does
acquire knowledge, in its organization, about the natural
scenes (environment). However, it is shown that the way
the agent perceives its environment is the key factor for the
resulting visual sensor topology. Even with very different
topologies between environments, it can be observed that
only by changing the set of movements the agent can
perform, the way the same environment is perceived also
changes.

Taking as an example, the artificial environment composed
by vertical stripes, if an agent performs only translational
movements parallel to the environment, the unique type of
stimuli the agent will know corresponds to vertical stripes,
then the most efficient retina it could develop should be one
which translates the possible changes in the perceived stimuli
(horizontal movement of the vertical stripes).

From another point of view, if the agent is only able to
perform rotational and scaling movements, then the visual
stimuli can change from vertical stripes to diagonal or even
horizontal stripes. With such a variation of stimuli, it is
expected that the retina topology should be different.

F. Sensorimotor Network with Real Data (ExpDrone)

A Parrot AR.Drone2.0 was used to acquire images from a
natural environment in Monsanto park in Lisbon. This drone
is equipped with a fixed front HD camera which during the
experiment was always pointing to its movement direction.
During the flight a video was recorded at a rate of 30 frames
per second, together with drone position variations (Ax,Ay)
from GPS, orientation variations (Af) and absolute altitude
(which corresponds to the state of the drone). For the sake
of simplicity and since state is not explicitly modeled in this
work, data from drone taking off or landing was removed
and the altitude was admitted as constant.

The data acquisition (image and actions) was performed
while the drone followed a pre-planned trajectory, on constant
altitude, where it had to pass over some locations defined
by GPS coordinates using its inner flight planner set through
QRGround Flight Control. Examples of acquired images, and
respective bilinear subsampling to 15x15 pixels images for
training, can be seen in Figure 13.

Fig. 13: Drone flight path in Monsanto, Lisboa.



The full data set recorded has 8340 samples, but with
a rate of 30 recorded samples per second, the variation
between a pre-action and a post-action image was practically
unnoticeable. This considered, the training samples were
cut to 556 with a time difference between two consecutive
images of 0.5 seconds (2 samples per second). The retina was
trained using 556 data triplets, (ig,i1,q), with 95 different
action identifiers.

Differently from the direct application of the Sensorimotor
Network used in [14] where the action space discretizes a two
dimensional motor space, in this experiment a motor space
with 4 degrees of freedom is considered. Each degree of
freedom was separately quantized in 4 bins, using k-means
clustering algorithm [21]). These were concatenated and then,
to each unique combination of the concatenated vectors a
specific action identifier q is assigned.

In Figure 14 three examples of visual stimuli prediction are
shown, using two different complexities of sensor structure:
one with 9 visual receptive fields and another with 16.
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Fig. 14: Visual stimuli prediction using two different Sensor
complexities (9 and 16 visual receptive fields).

As observable, and expected from previous results, the re-
construction is slightly better using the more complex retina.
Above, in Figure 15 it is show both sensor organization
topologies and respective RMSE. The area with lower error
corresponds to ground which occupies the bottom half of
the field of view with some deviations. During its flight, the
ground suffers some vertical movements (bigger and more
horizontal receptive fields). Looking at the top half of the
drone’s field of view, it can be seen that a greater variability
exists, originating a denser distribution of visual receptive
fields.

The tested sensorimotor is used with structures complex
enough to successfully demonstrate its applicability and great
predictive skills. However, if this model is to be used in a
certain task, it can be required that training images become
larger and the number of visual receptive fields and/or motor
movement fields increase considerably. This would need a
bigger time for training the model.

Fig. 15: Sensors organization topologies after training and
respective prediction error, RMSE.

VI. CONCLUSIONS AND FUTURE WORK

In robotics, as in many other engineering fields, there are
numerous problems where Nature is often the best role model
to solve them.

In this work, it was possible to successfully apply the
biologically inspired proposed method [4] for post-action
images reconstruction and significantly reduce the number of
parameters needed to predict visual stimuli caused by self-
induced actions when compared with a Multilayer Percep-
tron.

The development of visual receptive fields taking into
account the changes induced by motor actions allows a good
adaptability of the organism to the environment and thus
a cheaper way for an agent to process and predict visual
stimuli. A specialized network architecture like the SNet
described in this work is advantageous for predicting the
interactions between a sensorial and a motor system, as
well as obtaining more reliable predictions of what agent
is expecting to see after moving.

This tight relationship between perception and actions
is key for guiding the development of sensory and motor
systems which will support acting upon the environment. The
comparison performed in this work between standard feed-
forward neural networks and Sensorimotor Network, suggests
that the latter might prove useful in bringing computers a step
closer to biological performance.

At the same time, the sensorimotor approach presents a
tight relationship between its structures and shows that by
changing each sensor or motor configuration or even the
agents environment, the system will successfully adapt to
develop efficient topologies for visual stimuli prediction, even



with real data (as the one used in ExpDrone) with differ-
ent motor representations. This image processing capability
makes such a system a good candidate for tasks deployment
such as anomaly detection or tracking.

Considering that it was possible to deploy a sensorimotor
structure using modified neural networks, it could be impor-
tant to follow the path of developing such system using a
more state-of-the-art machine learning method such as Deep
Learning which allows sequential training of many layers.
Another component which would increase the applicability of
the presented work is the notion of state to support planning
tasks. An online development algorithm would simplify the
application of this model to robots in different and dynamical
environments.
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